Integer Arithmetic
Important property $A x$ in $\mathbb{Z}: a b=0 \Rightarrow a=0$ or $b=0$
Cancellation Law Given $a, b, c \in \mathbb{Z}, c \neq 0$

$$
a c=b c \Rightarrow a=b
$$

Proof $a c=b c \Rightarrow a c-b c=0 \Rightarrow(a-b) c=0$

$$
\Rightarrow \quad a-b=0 \Rightarrow a=0
$$

Definition
Given $a, b \in \mathbb{Z}$, we write $a \mid b$ if $\exists c \in \mathbb{Z}$ such that $b=a c$. A factorization of b is any breakdown

$$
b=a_{1} \cdot a_{2} \cdot \cdots a_{n} \text { where } a_{i} \in \mathbb{Z}
$$

The only factors of 1 are ± 1.
Definition $p \in \mathbb{N}$ is prime it $p>1$ and $\forall x \in \mathbb{N}, x \mid p \Rightarrow x=1$ or $x=p$. If not we say p is composite.
highest
com common Factor
Definition Given $a, b \in \mathbb{Z}, \operatorname{HCF}(a, b) \in \mathbb{N}$ is the largest common factor of a and b.
$a, 6$ coprime $\Longleftrightarrow H C F(a, b)=1$
E.g. $H C F(15,7)=1, H C F(36,21)=3$

Proposition Given $a, b, m \in \mathbb{Z}$

$$
m \mid a \text { and } m|b \Rightarrow m| H C F(a, b)
$$

Remainder Thenar
There exists unique
Given $n \in \mathbb{Z}, m \in \mathbb{N}, \exists l$ gur \mathbb{Z} such that

- $n=q^{m}+r$
- $0 \leqslant r<m$
called the remainder n modulo m

Theorem Given $a, b \in \mathbb{Z}, \exists u, v \in \mathbb{Z}$ such that $u a+v b=\operatorname{HCF}(a, b)$.
In fact $\exists u, v \in \mathbb{Z}$ such that $u a+v b=1$ $\Leftrightarrow \quad a, b$ coprime.

Undid's Lemma Let $p \in \mathbb{N}$ be prime and $a, b \in \mathbb{Z}$

$$
p \mid a b \Rightarrow p l a \text { or } p \mid b
$$

Fundamental Theorem of Arithmetic
Every $a \in \mathbb{N}, a>1$ can be written as a product of primes

$$
a=p_{1} p_{2} \cdots p_{r}
$$

Such a factorization is unique up to reordering.
Remark We'll prove these results in much greater generality later in the course.

FTOA \Rightarrow Every $a \in \mathbb{Q}, a \neq 1$ can be written uniquely in from $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot p_{n}^{\alpha_{n}}, p_{i}$ distinct primes, $\alpha_{i} \in \mathbb{Z} \backslash\{0\}$.
Theorem There are infinitely many prime numbers.
Proof Assume not and $\left\{p_{1}, \ldots p_{n}\right\}$ is a complete list of distinct primes.

Let $c=p_{1} \cdots p_{n}+1$
$\Rightarrow \quad c \in \mathbb{N}$ and $c>1$
\Rightarrow After perhaps reordering $p, \mid c$
$\Rightarrow p_{1} d=p_{1} \ldots p_{n}+1$ for some $d \in N$
$\Rightarrow \quad p_{1}\left(d-p_{2} \cdots p_{n}\right)=1 \Rightarrow p_{1} \mid 1$. Contradiction.

Modular Arithmetic
Fix $m \in \mathbb{N}$
Definition we say $a, b \in \mathbb{Z}$ are congruent modulo m, if they hove the same remainder modulo m. We write $a \equiv b \bmod m(\Leftrightarrow m \mid(b-a))$ vemaindas are unique
Remanider doses partition $\mathbb{Z} \Rightarrow$ congruence modulo m is equivalence relation.
$\mathbb{Z} / m \mathbb{Z}:=$ Equivalence cases modulo m.

$$
\begin{aligned}
& \mathbb{Z} / m \mathbb{Z}=\{[0],[1], \ldots,[m-1]\} \\
& \Rightarrow|\mathbb{Z} / m \mathbb{Z}|=m
\end{aligned}
$$

Important Exercise $\quad \forall a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$

$$
\begin{aligned}
{[a]=\left[a^{\prime}\right],[b]=\left[b^{\prime}\right] \Rightarrow } & {[a+b]=\left[a^{\prime}+b^{\prime}\right] } \\
& \text { and } \\
& {[a b]=\left[a^{\prime} b^{\prime}\right] }
\end{aligned}
$$

Examph $m=3, a=4, a^{\prime}=7, b=2, b^{\prime}=-1$

$$
\begin{aligned}
& a+b=6, a^{\prime}+b^{\prime}=3 \text { and }[6]=[3]=[0] \\
& a b=8, a^{\prime} b==-7 \text { and }[8]=[2]=[-7]
\end{aligned}
$$

Definition We define + and x on $\mathbb{Z} / m \mathbb{Z}$ as follows:

- Given $[a],[b] \in \mathbb{Z} / m \mathbb{Z},[a]+[b]:=[a+b]$
- Given $[a],[b] \in \mathbb{C} / m \mathbb{Z},[a] \times[b]:=[a b]$

Independent st choice ot equivalence doss representative by above fact.
$(\mathbb{Z} / m \mathbb{Z},+, x)$ shaves many properties with $(\mathbb{Z},+, x)$. For example, [0] behaves like 0 and [1] behaves like 1 . There are important differences though,

- $\underbrace{[1]+[1]+\ldots+[1]}_{m \text { times }}=[m]=[0]$
- If $m=a b, a, b \in \mathbb{N}, a, b<m$ (ie m composite) $\Rightarrow[a],[b] \neq[0]$.
However $[a] \times[b]=[a b]=[m]=[0]$
non-zers terms san arultiply to give zero.
- If $p \in \mathbb{N}$ prime, $a \in \mathbb{Z}$

$$
[a] \neq[0] \Leftrightarrow p \times a \Leftrightarrow H C F(a, p)=1
$$

$\Leftrightarrow \exists u, v \in \mathbb{Z}$ such that $u a+v p=1$
$\Leftrightarrow \exists[u] \in \mathbb{Z} / p \mathbb{Z}$ such that $[u] \times[a]=[1]$
We say Cu$]$ is a multiplicative civerse of $[a]$.

Condusion : $p \in \mathbb{N}$ prime \Rightarrow Every non-zero element of $\mathbb{Z} / p \mathbb{Z}$ has a multiplicative inverse.

Not true For \mathbb{Z}

True for Q

